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Abstract	
 

 

Uncontrolled bursts of electrical activity between neurons in the brain are known as a seizure, a 

physical condition with various symptoms such as convulsions (uncontrollable muscle spasms with 

loss of consciousness), involuntary stiffness and shaking of the body, confusion, blackouts, loss of 

bladder control and many more. Individuals suffering from recurring seizures are diagnosed with 

epilepsy.  Predicting or a rapidly detecting the onset of a seizure is critical for avoiding neurological 

damage in epileptic patients. A method that can give a rapid alert for hospital staff will reduce the 

cost of hospital care and the risk of a patient suffering from physical and neurological injuries. 

Mutual Information (MI) is an information-theoretic quantity that can be visually represented in 

many ways especially with EEG (scalp electroencephalogram) data. Mutual information has the 

capability of detecting the onset of a seizure and monitor the duration of a seizure visually. MI 

combined with a peak finding algorithm is not complicated mathematically and is also highly 

visually interpretable. “The aim of this work was to evaluate whether MI can be used for 

predicting epileptic seizures using EEG data and to evaluate how well MI can discriminate between 

data with or without seizures”. Prediction statistics, Accuracy, Specificity, Precision and Selectivity 

were calculated on a per-second basis for the EEG recordings.  Gold Standard Positives were from 

the published CHB-MIT dataset annotations, while test positives were from a novel rising-edge 

Mutual Information method. Even if MI has the capability to detect seizures it is vital that it is 

combined with good rising-edge finding algorithms to screen out peaks originating from other 

intense brain activity, noise spikes or electrode potential bias in the EEG recordings that may result 

in false positives. It was found that this method performed well on EEG data; it was better at 

detecting the onset of seizure (as was our priority), and less effective at identifying the end (or 

equivalently, the duration) of the seizure. 



 

Introduction	
 

 

Patients with epilepsy, a central nervous system disorder, suffer from recurrent seizures. A seizure 

can occur without warning and a constant risk for an epileptic person to enter a state with lost 

attention and body convulsions which sometimes are mistaken for intoxication. Frequent seizures 

increase the risk of physical and neurological injuries and even the death of the patient. There are 

two classes of seizures: A seizure that start in one area and it’s spread across the brain depends on 

the neurons involved are known as focal seizures. The second class the generalized seizure can 

start as a focal seizure that spread from one side of the brain to the other or start simultaneously 

over both sides of the brain [1, 4, 7].  

A rapid method for detection of the onset of seizures is important for rapid medical treatment and 

alerting hospital staff. A skilled Electroencephalographer require 6-10 seconds to determine 

whether an abnormality in the EEG (scalp electroencephalogram) recording can be considered as a 

seizure or a part of a seizure [15]. It is of less interest to estimate the duration of a seizure than to 

detect the onset.  

The scalp electroencephalogram (EEG), a non-invasive multi-channel recording of the electrical 

activity in the brain are interpreted by skilled physicians for detecting seizures. Each channel 

represents the difference between potentials measured at two electrodes. The electrode positions 

on the scalp are set by the used international standard. The features in an EEG that indicate a 

seizure in one individual do not always indicate one in other patients [2, 6, 7, 10, 11, 13, 15]. For 

this reason seizure detection based on multi-patient data tends to be less accurate than a patient 

specific method [2, 11, 15]. A screening method that is non-patient specific that rapidly can alert 

an onset of a seizure from similar EEG pattern is also of value [2, 3, 11, 13]. 



 

In this work my aims were to evaluate Mutual Information (MI) an information-theoretic method 

based on paired observations and its capability to detect and even predict seizures. A rapid 

method that can discriminate an MI peak due to seizures and from one due to non-seizure events 

is also important, as there is a lot of non-seizure brain activity that results in high MI. Prompt 

seizure detection requires peak finding algorithms that identify the rising edge of the peak rather 

than the peak maximum. MI are a method that can be visually interpreted during the recording of 

an EEG and provide a lot of information for the doctor monitoring the patient. 

 

Electroencephalogram	(EEG)	

 

An EEG (scalp electroencephalogram) recording is characterized by the number of channels and 

the position of the electrodes. International standards define the naming convention for scalp 

electrode arrays. The prefix letters F, T, C, P, O represent to the brain lobes where the electrode is 

positioned on the scalp.  

This is then followed by a suffix. An odd number represents an electrode positioned on the left 

side of the scalp and an even number an electrode positioned on the right side of the scalp. The 

suffix letter z indicates that the electrode is placed in the midline between hemispheres. The 

letters represent the lobes as follows F the frontal, T the temporal, C the central, P the parietal 

and O the occipital lobe. The raw data in this work were collected from recordings with the 10-20 

international system and the locations of the electrodes are shown in figure 1. The sampling 

frequency of the EEG is not set by a standard. Two electrodes and the measured difference in 

potential between them defines the EEG channel. The size of the collected data is dependent of 

the sampling frequency and one hour at 256 Hz result in 921600 data points for each measured 

EEG channel. An EEG of with one channel is shown in figure 2. EEG activity has been categorized as 



 

ictal which is the phase during a seizure, the post-ictal the period after the seizure and the inter-

ictal the period between seizures. 

 

 

 

Figure 1. In this picture the positions of the electrodes on the scalp are placed according to the 

international 10-20 system that were used collecting the EEG data used in this work.  

 



 

 

Figure 2. One of the EEG channel recordings of the patient file chb01_03, with the annotated 

seizure marked with red vertical lines (left panels). This is an example of the raw data and 

annotations. The panel title is the channel -- the signal is a voltage measured between the two 

electrodes (FP1 and F7). Note the number of non-seizure spikes, which make detection by voltage 

amplitude alone inaccurate. Right panel is a close-up of the seizure interval. The electrodes that 

comprise these channels are all on the left side of the scalp, as is indicated by having odd-number 

suffixes. 

 

 

 

 



 

Mutual	Information	(MI)	

 

Mutual Information quantifies how much information is shared between a pair of variables.  

The information entropy H(X) (in bits of information) of a variable x is given by the formula: 

 

The joint entropy H(X,Y) is given by the formula: 

 

 

This, combined with the entropy H(X) and H(Y), are used to calculate the Mutual Information I(X;Y) 

 

 

The Venn-diagram in figure 3 show the relationship between the Mutual Information I(X;Y) and 

the entropies H(X), H(Y) and H(X,Y). 

 



 

 

Fig 3. A Venn diagram showing the relationship between Mutual Information I(X;Y), H(X), H(Y) and 

H(X,Y). 

 

Methods	and	material	
 

 

EEG	data	
 

The raw data used in this work were taken from the CHB-MIT database [14] and contains multiple 

EEG recordings with and without seizures. EEG data were collected at the Children's Hospital, 

Boston for 23 pediatric patients. Data for one adult patient were collected at Beth Israel 

Deaconess Medical Center. Most of the data consists of 23 EEG channels and with the electrodes 

setup according to the international 10-20 system and recorded at 256 samples per second with a 

16-bit resolution. 



 

The data were first used in the publication “Application of Machine Learning To Epileptic Seizure 

Detection” by Ali Shoeb and John Guttag” [15] that made it available for download from the 

PhysioNet website: http://physionet.org/physiobank/database/chbmit/.   

This dataset has been and are still frequently used in publications related to seizure detection and 

prediction. Since its public release a search in the PubMed database lists more than 70 references 

that have used this data set. Most of the data are recordings without seizures and with most 

seizures being short in time, seizures represent only 0.31% of the data in the recordings. No 

additional treatment than re-ordering, the removal of some channels (explained below) and 

truncation of digits were performed on the raw data. 16-bit numbers are (for our purposes) 

effectively continuous, whereas MI is computed on discrete data. One way to discretize is to 

truncate to use fewer digits. Artifacts of bias and noise were noted but kept as these are 

commonly observed in clinical practice.  

 

Software	 	
 

The algorithms used in this work was developed in Python 3.7.6 provided with the individual 

Anaconda distribution package (https://www anaconda.com) for Macintosh and contains the SciPy 

libraries (https://www.scipy.org) and the scikit-learn libraries (https://scikit-learn.org) used for the 

calculation of MI. The import of raw data in EDF format was handled by the pyedflib-0.1.17 

libraries for Python. The MI were be converted from the result from scikit-learn in units of nats 

(based on the natural logarithm, loge, ln) into bits (based on log2) by dividing the result by loge (2). 

 

 



 

MI	calculation	
 

The raw-data files included channels that had no data or channels that were not present in all files 

and those were removed as mentioned. Most files contained duplicates of the channels T8-P8 and 

T7-P7 (P7-T7) which resulted in a MI biased towards those channels. The two duplicate channels 

measure the same property but a small difference in numerical values it gives an artifact of high 

mutual information that hides valuable information contributed by other paired EEG-channels. 

Additional channels found in some files but absent in others were removed to make as much of 

the raw data comparable. Only the 18 EEG channels present in all files were used in this work. MI 

were calculated by using a 10 second moving window that progressed with one second at time 

resulting in a 2560 x 18. matrix. As raw data were calculated on the separate files a gap of 9 

seconds was introduced in the results of each calculated file (the sampling time).  

Three main abbreviations of MI are used in this work:  

• MItot(t) the sum of the mutual information over all channels, for a single moving window 

ending at time t.  

• MIt-ratio(t) = MItot(t) / MItot(t-Δt) where t is the current window time and t-Δt the previous 

window time, with Δt = 1s. This is a backward-difference discrete differentiation of MItot(t).  

 

MItrn(t) outputs 1 when MIt-ratio(t) > ratio_lim for t, t-Δt, …, t-(n-1)*Δt (in other words, for n 

successive seconds), and outputs 0 otherwise. Higher n reduces false positives, but also results in 

an n-1 second delay of an alert. A higher threshold (ratio_lim) reduces false positives, but also 

reduces sensitivity. 

 



 

A large moving window acts as a low-pass filter, reducing the MItot as the proportion of new 

information introduced becomes less significant. It has fewer false positives, but more false 

negatives, in particular it tends to miss short seizures or seizures which generate low MI.  A small 

moving window increase the number of short peaks with fairly high MI making noise within the 

raw data more significant. How the size of the moving window effects the type of peaks and thus 

peak finding are shown in the results section. 

Bias in a graph of MItot by time is common. Peak detection is not performed against flat 

surroundings, and it is not necessarily the highest value of MItot that is related to a seizure. Rather 

we note that seizures are often associated with a rapid rise in MItot, hence our invention of the 

“rising-edge” based method MItrn(t). Detecting an onset of a seizure requires an algorithm that is 

able to discount the changes in MItot that are not related to seizures and in instead detect the 

rapid increases of MItot(t) that often characterize seizures. Normal brain activity and problems with 

the electrode measurements will always contribute to the overall MItot. 

 

MIt-ratio and MItrn 

One expects MIt-ratio > 0 on the rising edge of MItot. MItrn(t) returns 1 if MIt-ratio(t) exceeds the 

ratio_lim for nSAT (number of Seconds Above Threshold) consecutive seconds.  In a clinical 

implementation this would sound an alert to staff.  

 

 

 



 

Results		
 

 

Calculating the Mutual Information between paired of EEG channels using a set window that 

progress with time during the recording of the EEG result in a graph of MItot windows by time 

where annotated seizures often are found as partially gaussian peaks. The length of the moving 

window defines the total MI as the amount of new information introduced are determine an 

increase or decrease of MItot. A rapid onset of a seizure will introduce a lot of information but have 

a smaller contribution in a large window. A too small window will enhance the contribution of all 

sources of information including noise and un-related seizure information. The balance of possible 

loss of information using a larger window giving more smooth peaks will affect peak finding but 

also delay it. In this work a 10 second moving window were used that progressed with 1 second. A 

smaller window size was not suitable for simple peak finding algorithms while a larger increased 

the risk of not detecting short seizures. I did not exhaustively evaluate the size of the moving 

window as using a 10 second window worked well. In figure 4 the effect of the size of using 

different sizes of the moving window is shown. 

 



 

 

Figure 4. An example to illustrate how the chosen size for the moving window affects MItot. A 5 

second (top) and 60 second (bottom) moving frame and the resulting MItot(t) calculated for patient 

file chb01_03. The annotated seizure is marked with vertical lines in both panels. On the left is the 

entire recording and on the right is a close up of the seizure. Note the lower noise (hence fewer 

false positives) but also reduced amplitude (and potentially more false negatives) as well as 

delayed alert for the 60-second window. 

 

As mentioned earlier duplicated EEG channels were present in most data files and were removed 

for making the data have a more equal contribution to MItot. Using data with no pre-filtering or 

alteration except for the truncation of digits has the advantage of being a fair evaluation of using 

MI with EEG. Removing artifacts in such complex raw data as EEG would enhance the overall 

statistic performance [15] but also require the knowledge of EEG recordings such as a trained 

physician has. 

 



 

	
Detection	results	
 

 

Calculating the number of false-positive alarm rate per hour (FAR) is a fair judgement of the 

capability of predicting seizures [2, 15]. The prediction statistics for finding onsets of seizures were 

calculated based on the concatenation of the predicted results obtained from the patient files. 

Larger gaps with missing recordings compared with time are the result of data files not being 

comparable and any offset related to the original data collection. The MItot and MItrn were first 

calculated separately on each data-file, before the files where finally merged and the predictions 

were tabulated. 

 MItrn was initialized as a test negative at the beginning of the recording. All possible seizure 

windows were checked against the record of annotated seizures (Gold Standard Positives). FP 

(False Positive), True Positive (TP), False Negative (FN), and True Negative (TN) were then 

tabulated based on the MItrn result and Gold Standard annotation. The predictions were evaluated 

by calculating the accuracy, precision, sensitivity (True Positive Rate, TPR), specificity, and the 

False Positive Rate (FPR) for the individual patients and the concatenated (all-patient) results by 

the equations 5, 6, 7, 8 and 9 below. The performance was evaluated against several settings for 

the window size, ratio_lim, and nSAT defined earlier.  

 



 

 

The detection statistics are presented as a Receiver Operating Characteristic (ROC) calculated for 

the entire cohort of patient data. Based on the ROC curve a nSAT of 20 and the ratio_lims of 0.985, 

0.995 and 1.005 were selected for the peak detection shown in figure 5.  How the detection 

statistics are affected by different values of nSAT and the ratio_lim are shown in figure 6. A large 

nSAT are less effective for reducing the amount of FP than the ratio_lim. The FP drops significantly 

with a ratio_lim above 1 but also results in a lower TPR. It is also seen that the nSAT is less 

effective at a high or low ratio_lim and therefore can be adjusted to balance between a descent 

TPR and the delay of peak detection. The very steep slope when MI rise fast and are sustained for 

several seconds, the TPR rise faster than the FPR. An alarm can be created that take both the rate 

of rise of MI, and the number of seconds of that rise in consideration of detecting peaks. The 

effect of the nSAT and the ratio_lim and patient specificity are shown for the patients chb01 and 

chb15 in figure 7, figure 8 and figure 9. Patient chb15’s seizures have been earlier reported as 

being difficult to detect by existing methods [15]. Our method MItrn is able to detect the peaks 

related to the seizures as seen in figure 9. The MItot of chb15 is rather low compared to other 

patients and is apparently a patient specific characteristic. The numerical results for the entire 

concatenated cohort of patient files are found in table 1. 

  



 

 

Figure 5 a. 

 

Figure 5 b. 

 

Figure 5 c. 

Figure 5a – 5c. shows the concatenated MI of all patient files. The black vertical bars on top in the 

graphs represent the annotated seizures, while the black bars along the bottom axis indicate 

where each specific patient begins. The red colored dots are the MItrn true positives and the black 

dots below false positives. The grey line is a visual artifact due to the ratio of 1:350 between 

seizure and non-seizures. At the bottom each patient number are shown between the vertical lines 



 

 

Figure 6. A ROC for all the patient results shows the drop of the FPR by changing the ratio_lim from 

0.8 to 1.05 and the effect of the nSAT. The ratio_lim is marked in the graph for nSAT equal with 2 

and 20 seconds. nSAT consecutive windows found with ratio_lim of 1.0 have a higher confidence of 

being a seizure, than if the ratio_lim were 0.975 for the same nSAT. 

 

 

  



 

Table 2.  Results for all patient data with varying nSAT and ratio_lim. 

 

 

 



 

 

Table 1.  Results for all patient data with varying nSAT and ratio_lim (continued) 

 

 



 

 

Table 2.  Results for all patient data with varying nSAT and ratio_lim (continued) 

 

 



 

Table 2.  Results for all patient data with varying nSAT and ratio_lim (continued) 

 

 

 

Figure 7. This ROC for patient chb01 shows the importance of balancing the ratio_lim and the nSAT 

using the MItrn method. A high ratio_lim and high nSAT effectively lower the FPR but at the cost of 

the TPR. 



 

 

Figure 8. This ROC of patient chb15 shows that a low MItot can result in weaker seizure detection. 

 

Figure 9. This graph shows patient chb15 even with a lower MItot than the other patients our 

MItrn method are capable of detecting peaks (red dots) related to seizures. With a ratio of 1:72 

between seizures and non-seizures the artifact of FP (blue dots) showing as a line is present. 

 



 

Discussion	
 

 

Our MI based method is capable of being used for detecting seizures in EEG data. Many methods 

used to detect and predict seizures based on the “chb mit EEG” data have been published and 

several are based on neural network approaches and signal processing [7, 14]. MI has been used 

as method for characterizing seizures in Alzheimer patients and also for comparison of data 

acquired with scalp electrodes and the ear-EEG “keyhole” proposing the use of small wearable ear 

EEG recorders [8, 16]. To our knowledge none have yet published a work using peak finding on MI 

and evaluated the possibility of using it for the detection of seizures. Seizure EEG channel patterns 

are known to be patient bound [2, 3, 5, 7, 10, 11, 13, 15] and it has been shown that single 

patients models perform better with less delayed alerts but that they also need individual 

adjustments [2, 6, 7, 10, 11, 15]. The visual benefit of calculating MI over time for an EEG and the 

using MI over time with peak finding algorithms has not been reported previously as a method for 

monitoring and detection of seizures. A method that is sensitive, fast, with a low rate of false 

alerts that are able to detect and monitor seizures defines an essential part of the ultimate seizure 

predictor [2, 3, 5, 6, 10, 11]. The method of seizure detection using MI as the main feature need 

hours of testing and development to show a better than chance performance a problem that most 

methods of seizure detection share. A lot of methods have failed when tested in practice while 

some based on NN looks promising [1, 4, 6, 10, 11]. 

MI shows clear benefits for application in monitoring seizure patients. MItot and MItrn could be 

plotted vs. Time, in an easily understandable and interactive graphical user interface for an EEG 

device. The author is a former hospital chemist with a more than a decade of experience of 

diagnostic methods, connection of and evaluation of point of care (POC) instruments used daily by 

medical staff at the intensive care unit (ICU). Based on this experience, any method or application 



 

must be easy and provide an interface that is understandable for the medical staff to use. 

Monitoring real-time patient information from several systems (e.g. blood gases, glucose levels, 

and derived quantities) is routine at the ICU. One criterion of success for a point-of-care device is 

its easy visual interpretability, that will help medical staff in their decision making. Implementing 

MI as an addon for an EEG monitor would make EEG recordings more informative. 

The algorithm used in this work associates the discrete derivative of MI, surpassing an adjustable 

threshold for an adjustable minimum of time, with the onset of a seizure. True Positives are 

computed as the dot product of test result vs. Gold standard annotation, rather than on a more 

sophisticated measure relating test result to seizure onset time. We argue that the latter measure 

will be more aligned with the intent of our algorithm, and report a higher TPR, but leave that for 

future work. 

We have also tried Principal Components Analysis (PCA) to further reduce the amount of FP’s and 

got promising results, but full validation of this is also left to future work. 
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